# RCA NUVISi@r

## GENERAL-PURPOSE INDUSTRIAL SHARP-CUTOFF TETRODE 7587

• Low heater drain • Very high transconductance at low plate current • Exceptional uniformity of characteristics from tube to tube • Operation at full ratings at all altitudes • Rigorously controlled and tested • All-metal-and-ceramic construction • High resistance to shock and vibration • Operation at metal shell temperatures up to 150° C • Sharp-cutoff characteristics • Approx. 1 inch long; less than ½ inch in diameter; weighs approx. 2.35 g



## **RADIO CORPORATION OF AMERICA**

Harrison, N. J.

Trademark(s) ® Registereo

**Electron Tube Division** 

Marca(s) Registrada(s)

## RCA-7587

## SHARP-CUTOFF TETRODE Nuvistor Type for Industrial Applications



RCA-7587 is a sharp-cutoff, general-purpose tetrode of the nuvistor type. It is designed for use in a wide variety of industrial and military small-signal applications requiring compactness, low current drain, relatively low-voltage operation, exceptional uniformity of characteristics from tube to tube, and ability to withstand severe mechanical shock and vibration.

Actual Size These features plus its small size and light weight make the 7587 particularly suitable for rf-if, video-amplifier, and mixer service.

#### **General Features**

The 7587 has an all-metal-and-ceramic envelope provided with two peripheral lugs of unequal width to facilitate insertion in a socket. It is only 1.05" long, less than 1/2" in diameter, and weighs approximately 2.35 g. The 7587 features (1) a very rugged structure of unique design (2) a 6.3-volt low-wattage heater, and a specially designed cathode to assure very low heater-cathode leakage, (3) high transconductance at low plate current (10600 micromhos at 10 milliamperes), (4) very high input impedance, (5) high perveance, and (6) ability to operate at full ratings at any altitude.

#### **Structural Features**

A major feature of the 7587 is its all-ceramic-and-metal construction utilizing a light-weight, cantilever-supported cylindrical electrode structure. This unique type of electrode structure, inherent in the nuvistor design, provides a structure of excellent mechanical stability and extreme ruggedness. All connections are brazed at very high temperatures in a hydrogen atmosphere to eliminate the structural strain and element distortion often caused by welding. The tube is also exhausted and sealed at very high temperatures to eliminate the gases and impurities which are generally present in electron devices processed at low temperatures.

The structure of the 7587 nuvistor tetrode also permits automatic assembly using parts made to extremely small tolerances, thus assuring exceptional uniformity of characteristics from tube to tube.

#### **Special Tests and Controls**

The 7587 is rigidly controlled during manufacture, and is subjected to rigorous tests for intermittent shorts; for early-hour, 100-hour, and 1000-hour life performance; for resistance to impact shock, low-frequency vibration, variable-frequency vibration, low-pressure breakdown, and heater cycling.

#### Special Tests and Controls (Cont'd)

These special controls and tests, together with high transconductance at low plate current and voltage, small power requirements, ability to operate at full ratings at any altitude, and extremely small size, make the 7587 nuvistor tetrode exceptionally desirable for critical industrial applications — for example, in communications equipment, control and instrumentation equipment, medical electronic equipment, TV cameras, and test and measurement instruments.

#### GENERAL DATA

#### Electrical:

| Heater, for Unipotential Cathode:         Voltage (ac or dc).       6.3 ± 10%         Current at 6.3 volts.       0.15 | volts<br>mpere |
|------------------------------------------------------------------------------------------------------------------------|----------------|
| Direct Interelectrode Capacitances:                                                                                    |                |
| Grid-No.l to plate                                                                                                     | $\mu\mu{ m f}$ |
| Grid-No.1 to cathode, grid-No.2, heater & shell 7.0                                                                    | $\mu\mu f$     |
| Plate to cathode, grid-No.2, heater & shell 1.4                                                                        | $\mu\mu f$     |
| Heater to cathode                                                                                                      | $\mu\mu{ m f}$ |
| Characteristics, Class A <sub>j</sub> Amplifier:                                                                       |                |
| Plate-Supply Voltage                                                                                                   | volts          |
|                                                                                                                        | volts          |
| Cathode Resistor                                                                                                       | ohms           |
|                                                                                                                        | egohm          |

| Trace neargeance (app | 101.7. | • • |       |         |                | • • | 0.2   | megonii    |
|-----------------------|--------|-----|-------|---------|----------------|-----|-------|------------|
| Transconductance      |        | • • |       |         |                |     | 10600 | $\mu$ mhos |
| Plate Current         |        |     |       |         |                |     | 10    | ma         |
| Grid-No.2 Current     |        |     |       |         |                |     | 2.7   | ma         |
| Grid-No.l Voltage (Ap | prox.) | for | plate | current | of 10 $\mu$ a. | • • | 4.5   | volts      |

#### Mechanical:

| Operating Position                                    |
|-------------------------------------------------------|
| Maximum Overall Length                                |
| Maximum Seated Length                                 |
| Maximum Diameter                                      |
| Envelope                                              |
| Cap                                                   |
| Base                                                  |
| Socket Cinch Mfg. Co. No.133 65 10 001, or Equivalent |

#### INDUSTRIAL SERVICE

#### Maximum Ratings, Absolute-Maximum Values:

#### For Operation at Any Altitude

| PLATE SUPPLY VOLTAGE                   | max. volts |
|----------------------------------------|------------|
|                                        |            |
| PLATE VOLTAGE                          | max. volts |
| GRID-No.2 (SCREEN-GRID) SUPPLY VOLTAGE | max. volts |
| GRID-No.2 VOLTAGE                      | max. volts |
| GRID-No.1 (CONTROL-GRID) VOLTAGE:      |            |
| Negative bias value                    | max. volts |
| Peak positive value                    | max. volts |
| CATHODE CURRENT                        | max, ma    |
| $GRID-N_0.1 CURRENT \dots 2$           | max, ma    |

| PLATE DISSIPATION                                                                                       | . watts    |
|---------------------------------------------------------------------------------------------------------|------------|
| GRID-No.2 INPUT                                                                                         | . watt     |
| PEAK HEATER-CATHODE VOLTAGE:                                                                            |            |
| Heater negative with respect to cathode 100 max                                                         |            |
| Heater positive with respect to cathode 100 max                                                         | . volts    |
| Maximum Circuit Values:                                                                                 |            |
| Grid-No.1 Circuit Resistance: <sup>a</sup>                                                              |            |
| For fixed-bias operation                                                                                | . megohm   |
| For cathode-bias operation                                                                              | . megohm   |
| <sup>a</sup> For Operation at Metal-Shell Temperatures up to 150°C (See Dimensional Outline<br>Page 9). | Drawing on |

Ţ

#### CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

|                                                            | Note  | Min.    | Max.     |            |  |
|------------------------------------------------------------|-------|---------|----------|------------|--|
| Heater Current                                             | 1     | 0.140   | 0.160    | ampere     |  |
| Direct Interelectrode Capacitances:                        |       | 0.110   | 0.100    | dimpere    |  |
| Grid-No.1 to plate                                         | 2     |         | 0.012    | μμf        |  |
| Grid-No.1 to cathode, grid No.2, heater & shell            | 2     | 6.0     | 8.0      | μμf        |  |
| Plate to cathode, grid No.2, heater & shell                | 2     | 1.2     | 1.6      | $\mu\mu f$ |  |
| Heater to cathode                                          | 2     | 1.1     | 1.7      | $\mu\mu f$ |  |
| Plate Current (1)                                          | 1,3   | 8.5     | 11.5     | ma         |  |
| Plate Current $(2)$                                        | 1,4   | -       | 50       | $\mu$ a    |  |
| Grid-No.2 Current                                          | 1,3   | 1.8     | 3.6      | m a        |  |
| Transconductance (1)                                       | 1,3   | 9000    | 12200    | $\mu$ mhos |  |
| Transconductance $(2)$ ,                                   | 3,5   | 8000    | -        | $\mu$ mhos |  |
| Transconductance Change:                                   |       |         |          |            |  |
| Difference between Transconductance                        |       |         |          |            |  |
| (1) and Transconductance (2), ex-                          |       |         |          |            |  |
| pressed in per cent of Transconductance (1)                | -     | -       | 20       | %          |  |
| Reverse Grid Current                                       | 1,6   | -       | 0.1      | $\mu$ a    |  |
| Heater-Cathode Leakage Current:                            | •     |         | <b>ب</b> |            |  |
| Heater negative with respect to cathode                    | 1,8   | •       | 5.0      | $\mu$ a    |  |
| Heater positive with respect to cathode                    | 1,8   | -       | 5.0      | $\mu$ a    |  |
| Leakage Resistance:                                        |       |         |          |            |  |
| Between grid No.2 and all other electrodes                 | 17    | 500     |          |            |  |
| tied together                                              | 1,7   | 200     | -        | megohms    |  |
| Between grid No.1 and all other electrodes                 | 1,9   | 500     |          | manahma    |  |
| tied together                                              | 1,9   | 000     | -        | megohms    |  |
| tied together                                              | 1,10  | 500     | -        | megohms    |  |
|                                                            | 1,10  | 000     |          | megonins   |  |
| Note 1: With 6.3 volts ac or dc on heater.                 |       |         |          |            |  |
| Note 2: Measured in accordance with EIA Standard RS-191-A. |       |         |          |            |  |
| Note 3: With dc plate volts = $125$ , dc grid-No.2         | volts | = 50, c | athode   | resistor   |  |
| = 68 ohms, and cathode-bypass capacitor                    |       |         |          | ·          |  |
| Note 4: With dc plate volts = 125, dc grid-No              | 2 vol | ts = 50 | , de gi  | rid-No.l   |  |
| volts = -6, and metal shell grounded.                      |       |         |          |            |  |
| Note 5: With 5.7 volts ac or dc on heater.                 |       |         |          |            |  |
| Note 6: With dc plate volts = 200, dc grid-No.2            | volts | = 70, e | rid-No.  | l supply   |  |
| volts = -1.6, grid-No.1 resistor = 0.5 mego                |       |         |          |            |  |
|                                                            | ,     |         | 0        |            |  |

- Note 7: With grid-No.2 100 volts negative with respect to all other electrodes tied together.
- Note 8: With 100 volts dc applied between heater and cathode.
- Note 9: With grid No.1 100 volts negative with respect to all other electrodes tied together.
- Note 10: With plate 300 volts negative with respect to all other electrodes tied together.

#### SPECIAL RATINGS AND PERFORMANCE DATA

#### Shock Rating:

#### Fatigue Rating:

#### Variable-Frequency-Vibration Performance:

This test is performed on a sample lot of tubes from each production run. The tube is operated under the conditions specified in CHARACTERISTICS RANGE VALUES for Transconductance (1) with the addition of a plate-load resistor of 2000 ohms. During operation, tube is vibrated in a direction perpendicular to the longitudinal axis of the tube through the frequency range from 50 to 15000 cycles per second with a constant vibrational acceleration of 1 g. During the test, tube must not show an rms output voltage across the plate-load resistor in excess of:

> 35 millivolts over the frequency range from 50 to 6000 cps 500 millivolts over the frequency range from 6000 to 15000 cps

#### Low-Pressure Voltage-Breakdown Test:

This test is performed on a sample lot of tubes from each production run. In this test tubes are operated with 240 rms volts applied between plate and all other electrodes and will not break down or show evidence of corona when subjected to air pressures equivalent to altitudes up to 100000 feet.

#### Heater Cycling:

grid No.2, plate, and metal shell connected to ground. At the end of this test tubes are tested for open heaters and heater-cathode shorts.

#### Intermittent Shorts:

This test is performed on a sample lot of tubes from each production run. Tubes are subjected to the Thyratron-Type Shorts Test described in MIL-E-ID, Amendment 2, Par. 4.7.7, except that tapping is done by hand with a soft rubber tapper<sup>b</sup>. The Acceptance Curve for this test is shown in Fig.3. In this test tubes are criticized for permanent or temporary shorts and open circuits.

#### Early-Hour Stability Life Performance:

This test is performed on a sample lot of tubes from each production run to insure that tubes are properly stabilized. In this test tubes are operated for 20 hours at maximum rated plate dissipation. After two hours of operation and again after 20 hours of operation tubes are checked for transconductance under the conditions specified in CHARACTERISTICS RANGE VALUES for Transconductance (1). A tube is rejected if its transconductance after two or 20 hours of operation has changed more than 10 per cent from the O-hour value.

#### 100-Hour Life Performance:

This test is performed on a sample lot of tubes from each production run to insure a low percentage of early-hour inoperatives. Tubes are operated for 100 hours at maximum rated plate dissipation, and then subjected to the Intermittent Shorts Test previously described. Tubes must then show a transconductance of not less than 7600 micromhos under the conditions specified in CHARACTERISTICS RANGE VALUES for Transconductance (1), and a value not greater than one microampere for reverse grid current.

#### 1000-Hour Life Performance:

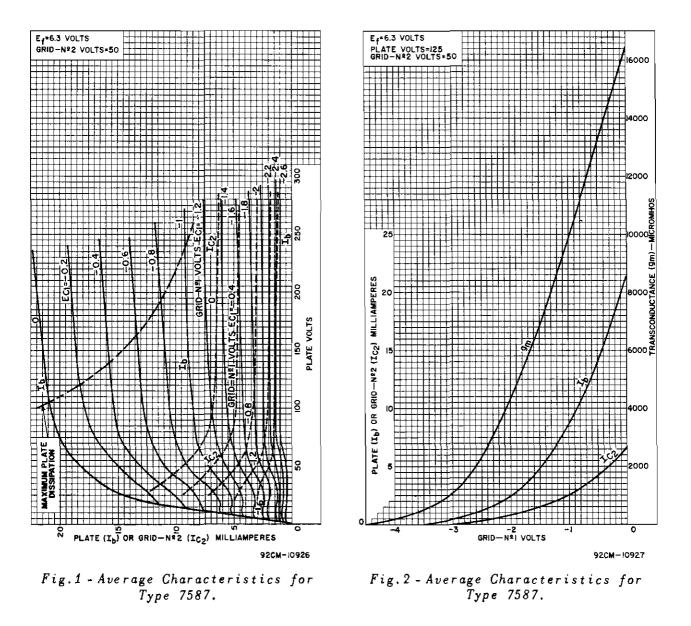
This test is performed on a sample lot of tubes from each production run to insure high quality of the individual tube and guard against epidemic failures due to excessive changes in any of the characteristics indicated below. In this test tubes are operated for 1000 hours at maximum rated plate dissipation and then criticized for inoperatives, reverse grid current, heater-cathode leakage current, and the leakage resistance. In addition, the average change in transconductance of the lot from the O-hour value for Transconductance (1) specified in CHARACTERISTICS RANGE VALUES, must not exceed 20 per cent at 500 hours and 25 per cent at 1000 hours.

<sup>b</sup> Specifications for this tapper will be supplied on request.

#### OPERATING CONSIDERATIONS

The base-pins of the 7587 fit the Cinch Mfg. Co. socket No.133 65 10 001 or equivalent. The socket may be mounted to hold the tube in any position.

The maximum ratings in the tabulated data are established in accordance with the following definition of the Absolute-Maximum Rating System for rating electron devices.


Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environment variations, and the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

ł.

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.



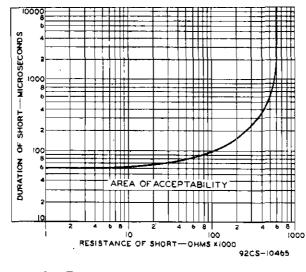
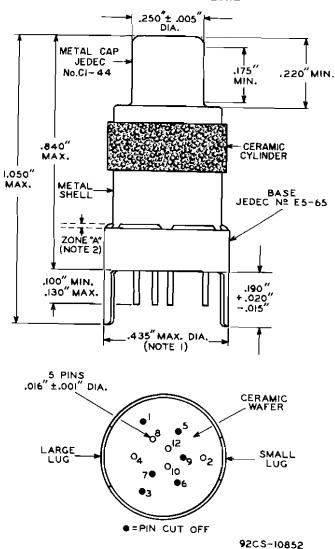
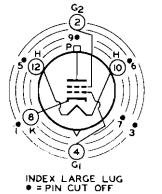




Fig.3 - Thyratron-Type Shorts Test for Type 7587.


#### DIMENSIONAL OUTLINE



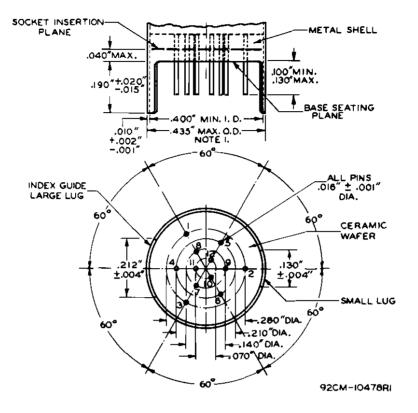
NOTE I: MAXIMUM O.D. OF 0.440" IS PERMITTED ALONG 0.190" LUG LENGTH. NOTE 2: SHELL TEMPERATURE SHOULD BE MEASURED IN ZONE "A" BETWEEN BROKEN LINES.

BASING DIAGRAM (Bottom View)

PIN 1: ▲ PIN 2: GRID No.2 PIN 3: ▲ PIN 4: GRID No.1 PIN 5: ▲ PIN 6: ▲



PIN 7: ▲ PIN 8: CATHODE PIN 9: ▲ PIN 10: HEATER PIN 11: OMITTED PIN 12: HEATER , CAP: PLATE


.'

24

С

#### 12AS

Pin has internal connection and is cut off close to ceramic wafer--Do Not Use.



#### MEDIUM CERAMIC-WAFER TWELVAR BASE

| JEDEC No. | NAME        | PINS                           |
|-----------|-------------|--------------------------------|
| E12-64    | 12-Pin Base | 1,2,3,4,5,6,7,8,<br>9,10,11,12 |
| E5-65     | 5-Pin Base  | 2,4,8,10,12,<br>(Note 2)       |

Note I: Maximum O.D. of 0.440" is permitted along the 0.190" lug length.

Note 2: Pins 1,3,5,6,7, and 9 are cut off to a length such that their ends do not touch the socket insertion plane. Pin 11 is omitted.

#### PIN-ALIGNMENT GAUGE

Base pin positions and lug positions shall be held to tolerances such that entire length of pins and lugs will without undue force pass into and disengage from flatplate gauge having thickness of 0.25" and twelve holes of  $0.0350^{\circ} \pm 0.0005$ " diameter located on four concentric circles as follows: Three holes located on  $0.2800^{\circ} \pm$ 0.0005", three holes located on  $0.2100^{\circ} \pm 0.0005$ ", three holes located on  $0.1400^{\circ} \pm 0.0005$ ", three holes located on  $0.1400^{\circ} \pm 0.0005$ ", three holes located on  $0.1400^{\circ} \pm 0.0005$ ", three holes located of  $\pm 0.080^{\circ}$  for each angle. In addition, gauge provides for two curved slots with chordal lengths of  $0.2270^{\circ} \pm 0.0005^{\circ}$  diameter circle concentric with pin circles at  $180^{\circ} \pm 0.08^{\circ}$  and having a width of  $0.0230^{\circ} \pm$  $0.0005^{\circ}$ .

۰.

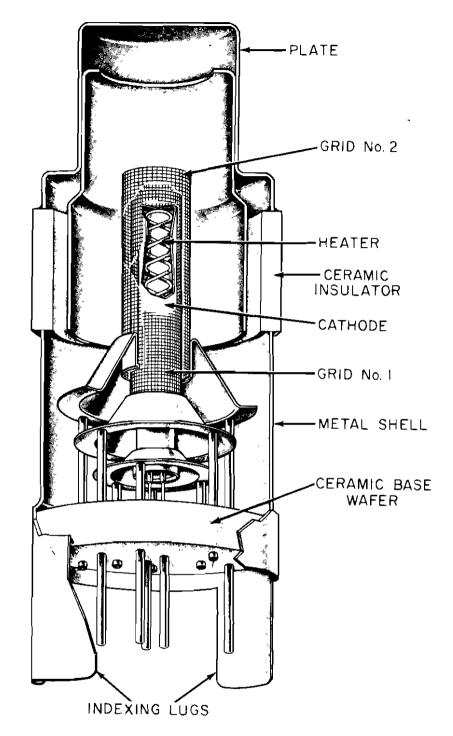



Fig.4 - Illustration of a nuvistor tetrode showing cylindrical electrodes and tripod-like supports.



.....